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Abstract

For text-to-video retrieval (T2VR), which aims to retrieve
unlabeled videos by ad-hoc textual queries, CLIP-based
methods currently lead the way. Compared to CLIP4Clip
which is efficient and compact, state-of-the-art models tend
to compute video-text similarity through fine-grained cross-
modal feature interaction and matching, putting their scal-
ability for large-scale T2VR applications into doubt. We
propose TeachCLIP, enabling a CLIP4Clip based student
network to learn from more advanced yet computationally
intensive models. In order to create a learning channel to
convey fine-grained cross-modal knowledge from a heavy
model to the student, we add to CLIP4Clip a simple Atten-
tional frame-Feature Aggregation (AFA) block, which by de-
sign adds no extra storage / computation overhead at the re-
trieval stage. Frame-text relevance scores calculated by the
teacher network are used as soft labels to supervise the at-
tentive weights produced by AFA. Extensive experiments on
multiple public datasets justify the viability of the proposed
method. TeachCLIP has the same efficiency and compact-
ness as CLIP4Clip, yet has near-SOTA effectiveness.

1. Introduction

Are holistic features, i.e. representing a given video / textual
query by a single feature vector, sufficient for text-to-video
retrieval (T2VR)? The question is scientifically interesting
due to the cross-modal nature of the T2VR task: video and
query have to be encoded into a semantically aligned com-
mon feature space for video-text matching [6]. The question
is also practically valuable as matching by holistic features
is much more scalable than matching by local features.

Due to the great success of the Contrastive Language-
Image Pre-Training (CLIP) model [29] in the image do-
main, we see encouraging efforts on re-purposing CLIP for
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Figure 1. Effectiveness, efficiency and video-feature stor-
age footprint of current (CLIP based) text-to-video retrieval
(T2VR) models. Backbone: CLIP(ViT-B/32) [29]. Dataset:
MSRVTT-1k [37]. Yellow circles indicate models using fine-
grained cross-modal feature interaction and matching. The pro-
posed TeachCLIP strikes a good balance between the three factors.

video-text matching [7, 9, 22, 24, 25, 36]. As an initial ef-
fort, CLIP4Clip [24] encodes a given video by first using
CLIP’s visual encoder to extract image features per frame.
The frame-level features, enhanced by Transformer blocks,
are aggregated into a video-level feature by mean pooling.
The video feature, with a typical size of 512, can be com-
puted and stored in advance, making CLIP4Clip efficient
for T2VR. Recent methods, e.g. X-CLIP [25], TS2-Net [22]
and X-Pool [9], improve over CLIP4Clip by considering
fine-grained frame-text similarities. Despite their better re-
trieval performance on multiple benchmark datasets [1, 35],
these models introduce substantial overhead w.r.t. offline
storage and online computation, see Fig. 1 and Tab. 1,
putting their scalability for large-scale T2VR into doubt.

Luckily, the importance of holistic features for CLIP-
based T2VR has not gone unnoticed. In a contemporary
work [4], a novel method termed PromptSwitch has been
developed. There, a spatial-temporal prompt cube is added
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to the CLIP image encoder to model intra-frame and inter-
frame visual token relationships for better video represen-
tation. We take a more simplified approach: knowledge
distillation (KD) [12]. KD was originally developed to im-
prove the classification performance of a student model by
transferring dark knowledge from a relatively larger and
stronger teacher model to the student. Good effort on ex-
ploiting KD for T2VR already exists before the advent of
CLIP. TeachText [3] first trains an ensemble of T2VR mod-
els with varied textual encoders. The averaged video-text
similarity given by the ensemble is then used as soft la-
bels to supervise a specific student network. TeachText is
designed specifically for video-level knowledge distillation.
Therefore, it remains unclear how to effectively pass fine-
grained cross-modal knowledge, which is crucial for the
current T2VR models’ good performance, on to the student.

In order to set a fine-grained learning channel for the stu-
dent, we propose to add an Attentional frame-Feature Ag-
gregation (AFA) block to CLIP4Clip, see Fig. 2. Given a
sequence of frame-level features as input, the AFA block
produces frame-specific weights, which will be used to ag-
gregate the frame features into a holistic video-level feature.
So different from fine-grained T2VR models [9, 25], we
need no frame feature at the retrieval stage. The AFA block
alone is not new, as similar blocks have been used for fusing
diverse video/text features [13]. Our innovation is being the
first to supervise the attentional weights with frame-text rel-
evance scores given by the teacher network. AFA thus cre-
ates a channel to accept the fine-grained knowledge from
the teacher. As our student and teacher networks are all
CLIP-based, we coin the proposed method TeachCLIP.

In sum, our contributions are as follows. We propose
TeachCLIP, letting a CLIP4Clip based network learn from
more advanced yet computationally heavy T2VR models.
TeachCLIP by design introduces no extra storage / compu-
tation overhead at the retrieval stage. Extensive experiments
on multiple datasets, i.e. MSRVTT-1k [37], MSRVTT-
3k [35], MSVD [1], VATEX [33], ActNetCap [10] and
DiDeMo [11], justify the viability of the proposed method.

Table 1. An overview of CLIP-based T2VR. Visual backbone:
ViT-B/32. Dataset: MSRVTT-1k. Note that we replicate existing
models with their author-provided source code where applicable,
so the numbers might differ (slightly) from the original papers.

Model Per video-text (↓)
matching (FLOPs)

Video feature (↓)
storage (KB)

Video feature (↓)
extraction (FLOPs)

R1
(↑)

SumR
(↑)

CLIPPING[27] 0.5K 2 16.80G 40.7 –
CLIP4Clip[24] 0.5K 2 53.64G 42.8 195.5
PromptSwitch[4] 0.5K 2 59.28G 43.6 195.7
CenterCLIP[38] 1.5K 6 – 44.2 197.9
TS2-Net[22] 6.1K 24 54.27G 46.7 200.5
X-CLIP[25] 220.9K 26 53.64G 45.3 200.8
X-Pool[9] 275.0K 24 53.49G 46.0 201.5
DRL[32] 220.4K 26 53.64G 46.2 203.2
Cap4Video[34] 220.9K 28 – 47.8 204.3
TeachCLIP 0.5K 2 53.65G 46.8 203.7

2. Related Work
At a high level, our idea of multi-grained teaching can be
viewed as knowledge distillation from a relatively heavy
teacher network to an efficient student network. Hence, we
briefly review progress in T2VR and knowledge distillation,
accordingly interpreting our novelty in such a joint context.

2.1. Text-to-Video Retrieval

Effective T2VR. The majority of the literature is on effec-
tiveness, aiming for better cross-modal matching networks
that compute video-text similarity more accurately. De-
pending on whether video/text feature extractors are trained
together with the cross-modal matching module, we cate-
gorize existing works into two groups. That is, feature re-
learning methods and CLIP-based end-to-end methods.

Feature re-learning methods typically employ pre-
trained 2D-CNNs [6, 18], 3D-CNNs [21, 26] or their com-
binations [8, 13] to obtain an initial feature representation of
a given video. Similarly, a given text is encoded either by
nontrainable bag-of-words [18], or by pre-trained text en-
coders including Word2Vec [5], BERT [28], GPT [3], etc.
Feature re-learning is then performed to project the video
and text features into a common latent space, wherein the
video-text relevance can be measured in terms of their dis-
tance in the common space. While there is still room for
improvement, e.g. by adding more features with novel fea-
ture fusion blocks [3, 8, 13], the performance of feature re-
learning methods is largely bounded by the initial features.

The advent of CLIP [29] and its application in the
video domain is reshaping the research landscape of T2VR.
CLIP-based end-to-end methods have shown superior per-
formance to their feature re-learning based predecessors on
multiple public datasets [9, 22, 24, 25]. As an initial attempt
in this line of research, CLIP4Clip [24] employs the visual
encoder of CLIP to first extract a sequence of frame-level
features. The frame features, updated by a stack of stan-
dard Transformer blocks, are averaged to produce a video-
level feature. Such a video feature can be precomputed of-
fline, while the storage footprint is linear w.r.t. the num-
ber of videos. Hence, a CLIP4Clip based T2VR system is
efficient and compact. Follow-ups of CLIP4Clip, e.g. X-
CLIP [25], TS2-Net [22], X-Pool [9] and Cap4Video [34],
improve video-text matching by fine-grained cross-modal
feature interaction and matching. Despite their better per-
formance, local interaction means features used for cross-
modal matching have to be computed online, while fine-
grained matching results in substantial computation and
storage overhead, see Tab. 1. This puts the scalability of
the latest CLIP-based methods into question.

Efficient T2VR. Depending on how the term “effi-
ciency” is interpreted, we see two lines of research: effi-
cient video feature extraction [27, 38] and efficient video-
text matching [4]. TeachCLIP belongs to the latter.



In order to accelerate video feature extraction, Center-
CLIP [38] utilizes multi-segment token clustering to find
the most representative tokens. Only these essential to-
kens will be forwarded through the entire Transformers,
while those non-essential tokens will be dropped at a pre-
specified Transformer block. Alternatively, CLIPPING [27]
reduces the inference cost by using a mobile-friendly ViT
[30] trained by feature-level knowledge distillation from
CLIP4Clip. Nonetheless, the video features extracted by
CLIPPING are less effective than their CLIP4Clip counter-
parts, resulting in a clear drop in retrieval effectiveness.

For efficient video-text matching, PromptSwitch [4] in-
troduces a prompt cube into the CLIP image encoder for
iteratively incorporating global video semantics into frame-
level features. The frame features are then averaged to pro-
duce the final video feature for video-text relevance estima-
tion. The probe cube operation adds computation overhead
for video feature extraction, with the number of FLOPs in-
creased from 53.64G to 59.28G, see Tab. 1. By contrast, the
proposed TeachCLIP leaves the CLIP image encoder as is,
with nearly the same feature extraction cost as CLIP4Clip.

TeachCLIP is orthogonal to recent works that focus
on improving their visual encoder by refining network ar-
chitectures (proxy-guided attention [36] and decomposed
spatial-temporal modules [20]), knowledge transfer from
the image domain to the video domain by selective to-
ken alignment [17], and large-scale video-text pretraining
[17, 36]. The stronger encoder will be naturally beneficial
to the student and the teacher models used by TeachCLIP.

2.2. Knowledge Distillation

KD is to transfer “dark” knowledge from a large teacher
model or ensemble of teacher models to a single, smaller
student model, which can be practically deployed [12]. The
form of the knowledge varies, which can be the output of
the teacher [3, 16], its intermediate representations [27], or
mutual relations of data examples [31]. In the context of
video-to-video retrieval, DnS is proposed to distill knowl-
edge, represented in the form of video-to-video relevance
scores, from a big network to a smaller network [16].

As for T2VR, TeachText is developed to train a stu-
dent network to mimic the averaged video-text similarity
produced by an ensemble of models based on feature re-
learning [3]. Since TeachText focuses solely on video-level
KD, how to impart fine-grained cross-modal knowledge to
the student network remains unexplored. CrossKD [31] in-
troduces a distillation loss that leverages the available struc-
tures of the video and caption domains, eliminating the need
for an external teacher during training. TeachCLIP thus dif-
fers from CrossKD in motivation (external vs internal KD)
and technology (multi-grained teaching vs additional loss).

3. Proposed TeachCLIP Method
3.1. Problem Setup

We are provided with two sorts of CLIP-based T2VR mod-
els. The first sort, using exclusively video-level features for
video-text matching, is efficient in terms of storage foot-
print and retrieval speed. Meanwhile, the other sort, rely-
ing on fine-grained cross-modal matching, is more accu-
rate than the former. Such an advantage, however, comes
at the cost of substantially increased storage and computa-
tion overhead. Viewing the former as a student and the latter
as a teacher, the proposed TeachCLIP method aims to im-
prove the relatively weaker student with multi-grained dark
knowledge from the teacher, as illustrated in Fig. 2. We opt
for the teacher-student framework due to its high flexibility:
Any advanced model can be used as a teacher model as long
as it provides video-level and frame-level relevance scores
w.r.t. a given textual query. In what follows, we detail the
student network in Sec. 3.2, which will be trained by the
proposed multi-grained teaching algorithm in Sec. 3.3.

3.2. The Student Network

Our student network is based on CLIP4Clip [24]. Given
a video x represented by a sequence of m frames
{f1, . . . , fm}, CLIP4Clip first feeds the frames in paral-
lel into the visual encoder of CLIP, i.e. a Vision Trans-
former (ViT), producing an array of frame-level features
{v1, . . . , vm}, sized m × d. These features, appended with
position encoding, then go through four stacked Trans-
former blocks for temporal modeling, resulting in m en-
hanced features {ϕ1, ϕ2, . . . , ϕm}. The video feature ϕ(x)
is obtained by mean pooling over the enhanced features.

We improve CLIP4Clip by replacing its mean pooling
layer with an Attentional frame-Feature Aggregation (AFA)
block. Given {ϕ1, ϕ2, . . . , ϕm} as its input, AFA is de-
signed to produce an m-dimensional nonnegative weight
vector {w1, . . . , wm}, where wi shall reflect the importance
of frame fi. More formally, the key data flow of the visual
side of the student network is expressed as follows:
{f1, . . . , fm} ← video-to-frames(x),
{v1, . . . , vm} ← ViT({f1, . . . , fm}),
{ϕ1, . . . , ϕm} ← Transformers× 4({v1, . . . , vm}),
{w1, . . . , wm} ← AFA({ϕ1, . . . , ϕm}),
ϕ(x) ←

∑m
i=1 wiϕi.

(1)
As illustrated in Fig. 2, we implement the AFA block

with a linear layer of d× d, followed by ReLU, another lin-
ear layer of d× 1, and finally a softmax layer. As such, the
amount of extra parameters introduced by AFA is O(d2).
Such computational overhead is ignorable. Note that AFA is
not novel by itself. Our innovation is to supervise the atten-
tion weights with frame-text relevance scores given by the
teacher network, as we will describe shortly in Sec. 3.3.2.
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Figure 2. TeachCLIP for training a CLIP4Clip based network for text-to-video retrieval. We add to CLIP4Clip an Attentional frame-
Feature Aggregation (AFA) block. We term this variant CLIP4Clip-AFA. Given a sequence of m frame-level features as input, AFA
outputs frame-specific weights {w1, . . . , wm}, used to aggregate the frame-level features into a video-level feature. The weights are
supervised by the frame-text relevance scores {yf (f1, t), . . . , yf (fm, t)} provided by a pre-trained (and frozen) teacher network. As such,
AFA provides a simple yet effective channel for fine-grained knowledge distillation. End-to-end network training is conducted by jointly
minimizing a coarse-grained teaching loss ℓCgT , a fine-grained teaching loss ℓFgT and a regular training loss ℓIN . CLIP4Clip-AFA trained
by TeachCLIP has the same retrieval time and nearly the same GPU memory usage as CLIP4Clip, yet more effective.

AFA thus creates a simple yet effective channel to pass the
fine-grained knowledge from the teacher on to the student.

3.3. Multi-grained Teaching

The proposed Multi-grained Teaching (MgT) algorithm
follows a standard SGD procedure. In each training it-
eration, a mini-batch B consisting of b video-text pairs
{(xi, ti)|i = 1, . . . , b} is randomly sampled from the given
training dataset. Such randomness ensures that each video
is irrelevant to other texts within the batch, and vice versa.
For simplicity, we re-use B to denote a b×b video-text simi-
larity matrix derived from the batch by the student network.
Specifically, Bi,j represents the cosine similarity between
ϕ(xi) and ϕ(tj), where i, j = 1, . . . , b. Accordingly, the i-
th row Bi,· stores similarity scores of video xi with respect
to all b texts in the batch, while the j-th column B·,j stores
similarity scores of all b videos in relation to text tj .

In order to perform MgT, we require two types of output
from the teacher network concerning video xi and text tj .
That is, a coarse-grained relevance score of xi and tj , de-
noted by yc(xi, tj), and a fine-grained relevance score for
each frame, denoted by yf (fi,k, tj), where k = 1, . . . ,m.
Note that both yc and yf are readily obtainable from the
SOTA models such as X-CLIP and TS2-Net, which can
compute relevance scores at both frame-level and video-
level. Moreover, we assume that {yf (fi,k, tj)} have been
adjusted using the softmax function.

3.3.1 Coarse-grained Teaching

Coarse-grained teaching is to supervise the student network
with video-level soft labels predicted by the teacher net-
work. To that end, TeachText [3] uses the element-wise
Huber loss, enforcing Bi,j to be close to yc(xi, tj). How-
ever, recent research on KD [14] suggests such type of loss
is suboptimal, as enforcing a student model to replicate the
output of a much stronger teacher model would unnecessar-
ily increase the difficulty of KD and consequently impede
transferring truly useful knowledge from the teacher to the
student. Instead, [14] suggests minimizing Pearson’s dis-
tance dp (or equivalently maximizing Pearson correlation
coefficient), which is known to be invariant under separate
changes in scale and location in two given variables. We
consider such invariance also desirable in the current task,
as minimizing dp between the output of the student and the
teacher networks is adequate for the student to rank-wisely
imitate the teacher. Following this thought, we opt to use
dp as the coarse-grained teaching loss ℓCgT . The loss for
video xi is computed as dp

(
σ(Bi,·), σ(yc(vi, ·))

)
, where σ

is softmax. In a similar manner, the loss for text tj is cal-
culated as dp

(
σ(B·,j), σ(yc(·, tj))

)
. Accordingly, ℓCgT is

defined as the following batch-level symmetric loss:

ℓCgT :=
1

b

b∑
i=1

dp
(
σ(Bi,·), σ(yc(vi, ·))

)
+

1

b

b∑
j=1

dp
(
σ(B·,j), σ(yc(·, tj))

) (2)



3.3.2 Fine-grained Teaching

Recall that at the visual side of the student network, we
introduce a lightweight AFA block to produce m atten-
tion weights w = {w1, . . . , wm} for a convex combi-
nation of the m temporally enhanced frame-level features
{ϕ1, . . . , ϕm}. Instead of letting the network learn the
weights all by itself, we propose to guide the weights-
related learning process with fine-grained relevance infor-
mation from the stronger teacher network. Intuitively,
frames that are more relevant with respect to the given
text should receive a higher weighting. Consequently, we
calculate a fine-grained teaching loss, denoted as ℓFgT ,
for each relevant video-text pair (vi, ti). This is achieved
by applying the cross-entropy (CE) loss between the as-
signed weights and the frame-text similarities provided by
the teacher. A batch-level loss is then derived by averaging
across all b relevant pairs within the specified batch, namely

ℓFgT := −1

b

b∑
i=1

m∑
k=1

yf (fi,k, ti) logwi,k. (3)

Notice that we do not consider fine-grained teaching on
the textual side, e.g. exploiting video-word similarities to
attentively aggregate word-level features. Our main con-
cern is that in contrast to a keyframe that represents the
video content to a large extent, a keyword token alone is
largely insufficient to represent the corresponding sentence.
Indeed, our preliminary experiment showed that adding
an AFA on the textual side brings no improvement. We
therefore did not go further in that direction. Following
CLIP4Clip, we adopt CLIP’s textual encoder, i.e. a GPT-2.

3.4. Training Algorithm

In addition to ℓCgT and ℓFgT , we calculate the symmet-
ric InfoNCE loss over the similarity matrix B. Denoted as
ℓIN , this loss is commonly used for training cross-modal
matching networks [22, 24, 25, 38]. The student network
is trained to minimize the sum of the three losses, i.e.
ℓCgT + ℓFgT + ℓIN , with the first two terms responsible
for MgT and the last term for regular training. We combine
the three losses equally due to their small disparity in the
magnitudes. TeachCLIP is easy to implement, see Alg. 1.

4. Experiments
4.1. Experimental Setup

Datasets. We adopt the following public datasets:
MSRVTT[35], MSVD[1], VATEX[33], ActivityNet-
Caption (ActNetCap) [10] and DiDeMo [11]. While the
original data split of MSRVTT has nearly 3k test videos
and 60k sentences, Yu et al. suggest another split of 9k
videos for training and 1k video-text pairs for testing
[37]. Probably due to the relatively smaller test-set size

Algorithm 1: TeachCLIP in a PyTorch style

Input: Training data loader D={(v, t)}
Trained teacher network

Output: Trained student network

optimizer = torch.optim.Adam(student.parameters)
for e=1,2,..., MAX_EPOCHES:

for mini-batch {(v, t)} in D:
optimizer.zero_grad()
y_c, y_f = teacher({(v, t)})
B, w = student({(v, t)})
l_CgT = pearson_distance_loss(y_c, B)
l_FgT = cross_entropy_loss(y_f, w)
l_IN = symmetric_InfoNCE_loss(B)
loss = l_CgT + l_FgT + l_IN
loss.backward()
optimizer.step()

that makes the evaluation more efficient, the 1k edition
(MSRVTT-1k) appears to be more popular than its 3k
counterpart (MSRVTT-3k). We follow this practice, using
MSRVTT-1k as the primary dataset for our ablation study.

For MSVD and DiDeMo, we use the official data split.
For VATEX, we use the split by [2]. As for ActNetCap,
we adopt the split by [8], testing on ‘val1’ as [22, 24, 25].
Different from the other datasets using a sentence as a
query, ActNetCap and DiDeMo, with descriptions per video
merged into a paragraph, essentially perform paragraph-to-
video retrieval. See Tab. 2 for an overview.

Table 2. Datasets. MSRVTT-1k is used for ablation study.

Dataset Training set Validation set Test set

#videos #texts #videos #texts #videos #texts
MSRVTT-1k [37] 9,000 180,000 n.a. n.a. 1,000 1,000
MSRVTT-3k [35] 6,513 130,260 497 9,940 2,990 59,800
MSVD [1] 1,200 48,774 100 4,290 670 27,763
VATEX [33] 25,991 259,910 1,500 15,000 1,500 15,000
ActNetCap [10] 10,009 10,009 n.a. n.a. 4,917 4,917
DiDeMo [11] 8,392 8,392 1,065 1,065 1,004 1,004

Evaluation criteria. We report standard rank-based
metrics, i.e. Recall at top k (k=1, 5, 10) and SumR
(R1+R5+R10) as a combined metric.

Implementation details. Subject to our computation ca-
pacity (8 NVIDIA 3090 GPUs), the default setting is as fol-
lows, unless otherwise stated. We use ViT-B/32 as the vi-
sual encoder and GPT-2 as the textual encoder, initialized
using OpenAI-released CLIP1. To prevent catastrophic for-
getting, the initial learning rate is set in a module-specific
manner: 1e-7 for ViT-B/32 and GPT-2, and 1e-4 for the re-
maining modules. Training lasts 10 epochs at maximum
by an Adam optimizer [15], with the learning rate decayed
by a cosine schedule strategy [23]. The input frame size is

1https://github.com/openai/CLIP

https://github.com/openai/CLIP


Table 3. Performance of TeachCLIP with different teachers.
Visual backbone: ViT-B/32. Dataset: MSRVTT-1k.

Choice of Teacher(s) R1 R5 R10 SumR
– 44.0 71.2 81.1 196.3
Single teacher:
TS2-Net 45.6 72.1 81.7 199.4 (+3.1 ↑)
X-CLIP 45.2 72.3 82.3 199.8 (+3.5 ↑)
X-Pool 44.0 73.5 82.6 200.1 (+3.8 ↑)
DRL 45.9 73.9 82.3 202.1 (+5.8 ↑)
X-CLIP (ViT-B/16) 45.7 73.9 83.1 202.7 (+6.4 ↑)
Multiple teachers:
X-CLIP & TS2-Net 46.5 72.7 83.0 202.2 (+5.9 ↑)
X-CLIP & DRL 45.8 73.9 83.5 203.2 (+6.9 ↑)
X-CLIP & X-Pool 46.8 74.3 82.6 203.7 (+7.4 ↑)
X-CLIP & TS2-Net & X-Pool 46.8 74.9 82.9 204.6 (+8.3 ↑)

224× 224. The maximum length of frame / word tokens is
set to 12 and 32, respectively, with mini-batch size of 240.
As ActNetCap and DiDeMo have much longer videos and
texts, we use a larger maximum token length of 64 and a
smaller batch size of 96. For MSRVTT-3k, MSVD, VATEX
and DiDeMo, models maximizing R1 on the corresponding
validation set are chosen. For MSRVTT-1k and ActNetCap
without validation set, we follow [24, 25], reporting peak-
ing performance on the test set.

4.2. Evaluating TeachCLIP

Recall that the essence of TeachCLIP is to let a stronger
teacher network to teach a computationally efficient student
network for better retrieval performance. Hence, Teach-
CLIP needs to be evaluated along multiple dimensions in-
cluding the choice of the teacher, the choice of the student,
and how the teaching process is executed.

Choice of the teacher. We have X-CLIP[25], TS2-Net
[22], X-Pool [9] and DRL[32] in our shortlist, as they are
open-source, provide both video-text and frame-text simi-
larity scores, and report competitive performance.

The performance of TeachCLIP with different teachers
is shown in Tab. 3. TeachCLIP consistently outperforms
the baseline, i.e. the student network trained alone, with the
gain of SumR ranging from 3.1 to 6.4, subject to the specific
teacher in use. We also try a multi-teacher teaching strategy,
where ℓCgT and ℓFgT are computed per teacher and mini-
mized jointly. Compared to the single-teacher counterparts,
even better performance is obtained with the maximum gain
of 8.3 in SumR. In both single-teacher and multi-teacher
settings, TeachCLIP improves over the baseline, with no ex-
tra computation / storage overhead in the retrieval stage.

Our experiments show that X-CLIP is stably repro-
ducible on varied datasets. Hence, this model is used as
the teacher in the rest of our ablation study.

Choice of the student network. As Tab. 4 shows,
TeachCLIP w/o teaching (row#3) is better than CLIP4Clip
w/o teaching (row#1), showing that the AFA block is help-

Table 4. Performance of different students.

Student Teacher R1 R5 SumR
CLIP4Clip – 42.8 71.6 195.5
CLIP4Clip X-CLIP 44.2 71.7 196.5 (+1.0 ↑)
CLIP4Clip-AFA – 44.0 71.2 196.3
CLIP4Clip-AFA X-CLIP 45.2 72.3 199.8 (+3.5 ↑)
CLIP4Clip-AFA X-CLIP(ViT-B/16) 45.7 73.9 202.7 (+6.4 ↑)
CLIP4Clip-AFA(ViT-B/16) – 46.3 72.8 201.5
CLIP4Clip-AFA(ViT-B/16) X-CLIP(ViT-B/16) 48.0 75.9 207.4 (+5.9 ↑)

Table 5. Performance of TeachCLIP with different losses.
Teacher: X-CLIP. Dataset: MSRVTT-1k.

Loss configuration R1 R5 R10 SumR
0: InfoNCE 44.0 71.2 81.1 196.3
1: + FgT(Huber as ℓFgT ) 42.5 72.6 81.8 196.9 (+0.6 ↑)
2: + FgT(Pearson as ℓFgT ) 44.1 72.1 81.0 197.2 (+0.9 ↑)
3: + FgT(CE as ℓFgT ) 44.1 71.2 82.0 197.3 (+1.0 ↑)
4: + CgT(Huber as ℓCgT ) 44.7 71.1 82.0 197.8 (+1.5 ↑)
5: + CgT(Pearson as ℓCgT ) 44.4 71.0 82.6 198.0 (+1.7 ↑)
6: + MgT(Pearson as ℓCgT , Huber as ℓFgT ) 45.6 71.9 81.8 199.3 (+3.0 ↑)
7: + MgT(Pearson as ℓCgT , Pearson as ℓFgT ) 45.4 73.0 81.3 199.7 (+3.4 ↑)
8: + MgT(Pearson as ℓCgT , CE as ℓFgT ) 45.2 72.3 82.3 199.8 (+3.5 ↑)

ful even under regular training. Given X-CLIP as the
teacher, TeachCLIP remains better than CLIP4Clip (199.8
vs 196.5 in SumR). Furthermore, we experiment with a
stronger backbone, substituting ViT-B/16 for ViT-B/32 as
the visual encoder. TeachCLIP is again effective, lifting
SumR from 201.5 to 207.4. Our choice of using CLIP4Clip-
AFA as the student network is verified.

Which loss for CgT? Comparing Setup#5 (the Pearson
distance loss) and Setup#4 (the Huber loss as in Teach-
Text) in Tab. 5, the former is marginally better (198.0 versus
197.8). Our experiments on other datasets also show that
the Pearson loss consistently outperforms the Huber loss.

Is MgT necessary? Setup#3, Setup#5 and Setup#8 in
Tab. 5 are constructed by adding FgT, CgT and MgT sep-
arately to the standard InfoNCE loss. MgT has SumR of
199.8, followed by CgT (198.0) and FgT (197.3). The ne-
cessity of MgT is verified.

Which loss for FgT? We compare CE with two alterna-
tives, namely Huber and Pearson, see Setup#1/#2 w/o CgT
and Setup#6/#7 w/ CgT. CE is the best loss for FgT.

Cross-data evaluation. To check if TeachCLIP merely
fits weights specific to each dataset, we test the models
trained on MSRVTT-1k directly on the other datasets. As
shown in Tab. 6, TeachCLIP is consistently better than
CLIP4Clip on all datasets, indicating that TeachCLIP does
not learn dataset-specific weights. Moreover, the lower
cross-dataset performance of CLIP4Clip-AFA as compared
to CLIP4Clip shows that learning the adaptive weights by
the student itself does not generalize.

Qualitative analysis. Some qualitative results are given
in Fig. 3. Consider the result at the top for instance. The
first frame is the most salient, as it shows key objects, i.e. a



Table 6. Cross-dataset results. Training data: MSRVTT-1k.

Model MSVD VATEX ActNetCap DiDeMo Mean
CLIP4Clip-AFA 201.4 217.2 152.8 149.6 180.3
CLIP4Clip 197.5 217.7 155.7 153.8 181.2
TeachCLIP 199.5 220.0 158.9 156.2 183.7
X-CLIP 200.0 218.1 159.5 159.5 184.3

girl wearing a blue dress and a man in a black shirt, specified
in the query. By computing frame-text relevance on the fly,
X-CLIP successfully identifies this frame. For this frame,
TeachCLIP also gives a larger weight, albeit precomputed.
Similar results can be observed in the other two examples.
These results further confirm the viability of TeachCLIP.

Frame
Weight

8789 self_rank2  teacher_rank0  student_rank1
8257 self_rank3  teacher_rank0  student_rank0
7973 self_rank12  teacher_rank5  student_rank6
8445 self_rank6  teacher_rank4  student_rank4

Query     a girl in blue color dress wearing siting speaking and television screen with black shirt man beside still image displaying on screen

Text

Rank 

Video

X-CLIP: 1 TeachCLIP: 2 CLIP4Clip-AFA: 3

Frame
Weight

Query     a man is discussing some functions for a science expirement

Rank 

Video

X-CLIP: 1 TeachCLIP: 1 CLIP4Clip-AFA: 4

Frame
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Query     people enjoy the performance of singer
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Figure 3. Visualization of frame weights given by X-CLIP,
CLIP4Clip-AFA and TeachCLIP. The weights by TeachCLIP
are closer to the query-dependent weights by X-CLIP, especially
on salient frames (manually marked out by red rectangles).

4.3. Comparison with Existing Methods

Baselines. Both feature re-learning based methods and
CLIP-based end-to-end methods are compared. For the
purpose of reproducible research, we include the following
open-sourced methods:
• Feature re-learning: W2VV++[18], DualE[6], CE[21],
SEA[19], MMT[8], TeachText[3], and LAFF[13].
• CLIP-based end-to-end: Besides CLIP4Clip [24], X-
CLIP [25], TS2-Net [22], X-Pool [9] and DRL [32]
that have been used in our ablation study, we include
CenterCLIP[38], PromptSwitch[4], Cap4Video [34], STAN
[20], CLIP-ViP [36] and UMT [17].
Note that Cap4Video leverages a large vision-language
model to enrich video descriptions, whilst CLIP-ViP and
UMT are pretrained on large-scale video-text pairs, making
the comparison somewhat unfair for the other models. We
include these models mainly to show the latest progress.

Among the end-to-end methods, not all of them have

results available, except for CLIP4Clip, TS2-Net, and X-
CLIP, see Tab. 7. Moreover, our experiments show that
the performance of TS2-Net is somewhat unstable: better
than CLIP4Clip on MSRVTT-1k (SumR 200.5 vs 195.5)
and MSRVTT-3k (153.6 vs 150.1), yet worse on MSVD
(204.9 vs 206.6) and ActNetCap (190.4 vs 194.1). Consid-
ering the availability of the teacher models and their perfor-
mance per dataset, we report TeachCLIP jointly taught by
X-CLIP & X-Pool on MSRVTT-1k. For the other datasets,
we report TeachCLIP taught by X-CLIP.

Effectiveness comparison. As shown in Tab. 7, the fea-
ture re-learning based methods (the top part of Tab. 7) are
clearly worse than the CLIP-based end-to-end methods (the
bottom part). The former can be much improved by adding
pre-extracted CLIP features (the middle part, cited from
[13]). Consider MMT, for instance. The inclusion of the
CLIP feature brings in a clear improvement (SumR 145.7
−→ 186.1 on MSRVTT-1k). Nonetheless, they remain infe-
rior to the end-to-end methods.

As for the end-to-end methods, there is no clear winner
that tops the performance on every dataset. DRL is the best
on MSRVTT-1k, followed by STAN and X-Pool. Center-
CLIP is the best on ActNetCap, followed by X-CLIP and
CLIP4Clip. X-CLIP leads on MSRVTT-3k and MSVD. Our
evaluation indicates that X-CLIP has the best overall perfor-
mance, with mean SumR of 203.4.

TeachCLIP outperforms X-CLIP on MSRVTT-1k. For
the other datasets, the performance gap between CLIP4Clip
and X-CLIP, measured in terms of the absolute difference
of SumR, is as follows: MSRVTT-3k 6.6, MSVD 3.5, VA-
TEX 0.0, ActNetCap 10.0 and DiDeMo 11.0. TeachCLIP,
as efficient as CLIP4Clip, reduces the above gap as follows:
MSRVTT-3k 6.6 → 0.7, ActNetCap 10.0 → 4.0, DiDeMo
11.0→ 4.2. Even more, TeachCLIP (marginally) surpasses
X-CLIP on MSVD (210.2 vs 210.1) and VATEX (251.6 vs
248.5). While one would normally not expect the student to
beat the teacher, our interpretation of this counter-intuitive
result is as follows. When the teacher and the student have
distinct network structures yet with relatively close perfor-
mance, as in the cases of MSVD and VATEX, the teacher
may provide complementary information that the student
cannot learn by itself. As such, MgT has an effect on en-
semble learning to train a better model. TeachCLIP, with
mean SumR of 202.9, is almost comparable to X-CLIP.

Storage comparison. Given a 512-d feature vec-
tor per video and 4 bytes per floating point, CLIP4Clip,
PromptSwitch, and TeachCLIP have the smallest storage
footprint of 2KB per video, see Tab. 1.

Efficiency comparison. We assess the number of
FLOPs2 required for pre video-text matching. As Tab. 1
shows, CLIP4Clip, PromptSwitch, and TeachCLIP are the
most efficient. We also assess the cost of video fea-

2https://github.com/sovrasov/flops-counter.pytorch

https://github.com/sovrasov/flops-counter.pytorch


Table 7. T2VR Performance of different methods on multiple datasets. Note that we replicate existing methods with their author-
provided source code where applicable, so the numbers might differ (slightly) from their original papers. We de-emphasize Cap4Video,
CLIP-ViP* and UMT using gray and italic font as Cap4Video resorts to an external large vision-language model to generate video captions
for retrieval, while CLIP-ViP* and UMT are pretrained on large-scale video-text pairs.

Model MSRVTT-1k MSRVTT-3k MSVD VATEX ActNetCap DiDeMo Mean
R1 R5 SumR R1 R5 SumR R1 R5 SumR R1 R5 SumR R1 R5 SumR R1 R5 SumR

Feature re-learning w/o CLIP feature:
W2VV++ [18] 18.9 45.3 121.7 11.1 29.6 81.2 22.4 51.6 138.8 – – – – – – – – – –
DualE [6] 21.1 48.7 130.0 11.6 30.3 83.2 – – – 36.8 73.6 194.1 – – – – – – –
CE [21] 20.9 48.8 132.1 10.0 29.0 80.2 19.8 49.0 132.6 – – – 17.7 46.6 – – – – –
SEA [19] 23.8 50.3 137.9 13.1 33.4 91.5 24.6 55.0 147.5 – – – – – – – – – –
MMT [8] 24.6 54.0 145.7 – – – – – – – – – 22.7 54.2 – – – – –
TeachText [3] 29.6 61.6 165.4 15.0 38.5 105.2 25.4 56.9 153.6 53.2 87.4 233.9 23.5 57.2 – – – – –

Feature re-learning with CLIP feature:
SEA 37.2 67.1 182.6 19.9 44.3 120.7 34.5 68.8 183.8 52.4 90.2 238.5 – – – – – – –
W2VV++ 39.4 68.1 185.6 23.0 49.0 132.7 37.8 71.0 190.4 55.8 91.2 243.0 – – – – – – –
MMT 39.5 68.3 186.1 24.9 50.5 137.4 40.6 72.0 194.3 54.4 89.2 238.6 – – – – – – –
LAFF [13] 45.8 71.5 199.3 29.1 54.9 149.8 45.4 70.6 200.6 59.1 91.7 247.1 – – – – – – –

CLIP-based end-to-end (visual backbone: ViT-B/32):
CenterCLIP [38] 44.2 71.6 197.9 – – – 47.3 76.8 209.7 – – – 43.9 74.6 204.3 – – – –
CLIP4Clip [24] 42.8 71.6 195.5 29.4 54.9 150.1 45.6 76.1 206.6 61.6 91.1 248.5 39.7 71.0 194.1 42.0 69.0 189.2 197.3
TS2-Net [22] 46.7 72.6 200.5 29.9 56.4 153.6 44.6 75.8 204.9 61.1 91.5 248.6 37.3 69.9 190.4 40.2 69.4 188.4 197.7
X-CLIP [25] 45.3 73.7 200.8 31.2 57.4 156.7 47.2 77.0 210.1 62.2 90.9 248.5 44.4 74.6 204.1 45.0 73.1 200.2 203.4
X-Pool [9] 46.0 72.8 201.5 – – – – – – – – – – – – – – – –
DRL [32] 46.2 74.0 203.2 – – – – – – – – – – – – 47.9 73.8 204.4 –
PromptSwitch [4] 43.6 71.5 195.7 – – – 46.3 75.8 206.6 – – – – – – – – – -
CLIP-ViP [36] 46.5 72.1 201.1 – – – – – – – – – – – – 40.6 70.4 190.3 –
STAN [20] 46.9 72.8 202.5 – – – – – – – – – – – – 46.5 71.5 198.9 –
Cap4Video [34] 47.8 73.8 204.3 – – – – – – – – – – – – 52.0 79.4 218.9 –
CLIP-ViP* 50.1 74.8 209.5 – – – – – – – – – – – – 48.6 77.1 210.1 –
UMT [17] 51.0 76.5 211.7 – – – 71.9 94.5 264.2 – – – 58.3 83.9 233.7 61.6 86.8 239.9 –

TeachCLIP 46.8 74.3 203.7 30.9 57.1 156.0 47.4 77.3 210.2 63.6 91.9 251.6 42.2 72.7 200.1 43.7 71.2 196.0 202.9

ture extraction. The computational demands, in terms of
FLOPs per video, are 53.64G for CLIP4Clip, 59.28G for
PromptSwitch, and 53.65G for TeachCLIP. Note that the
use of the frozen teacher (X-CLIP) produces extra com-
putation overhead during training. Given 12 frames per
video and batch size of 120, per batch the GPU memory in-
creases from 40.0GB to 42.7GB, while the forward / back-
ward computation increases from 0.9s to 1.2s. As training
is done offline, we consider such overhead affordable.

5. Conclusions and Remarks

We propose TeachCLIP with multi-grained teaching (MgT)
for efficient text-to-video retrieval (T2VR). Extensive ex-
periments on multiple public datasets allow us to conclude
as follows. While coarse-grained teaching and fine-grained
teaching are helpful even when used separately, their joint
use, namely MgT, is the best. TeachCLIP has the same effi-
ciency and compactness as CLIP4Clip, yet has near-SOTA

effectiveness. Our work provides a new outlook on the prac-
tical use of fine-grained T2VR models deemed to be useful
but inefficient in real-world applications.

Limitation of the current study. The conclusion that
holistic features are almost sufficient are based on our ex-
perimental data, most of which are short video clips in 10
seconds. Subject to our computation power, the majority
of the experiments are conducted with ViT-B/32 as the vi-
sual backbone. While using ViT-B/16 yields a larger gain
on MSRVTT-1k, see Tab. 4, the benefit of using a stronger
backbone on the other datasets needs further studying.
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