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Abstract

In this paper, we summarize our TRECVID 2021 experi-
ments. We participated in two tasks: Ad-hoc Video Search
(AVS) and Video-to-Text Description Generation (VTT).
For the AVS task, we develop our solutions based on two
cross-modal matching models, i.e. Sentence Encoder Assem-
bly (SEA) and Multiple Encoder Assembly (MEA). MEA is
a variant of SEA that performs modality-specific attention-
based feature fusion on the text side and the video side,
respectively. QOur best AVS run is obtained by late aver-
age fusion of MEA, SEA and CLIP, scoring mean infAP
of 0.8343. For the VTT task, we focus on description gen-
eration. Our VTT solutions are developed the basis of the
classical Bottom-Up-Top-Down (BUTD) model, with its en-
coder and decoder improved. Multi-Level visual representa-
tion, reinforced adversarial learning and cross-modal match-
ing based reranking help our best submission score CIDEr_D
of 28.8. The 2021 edition of the TRECVID benchmark has
been a fruitful participation for the RUCMM team. Our
runs are ranked at the third place for AVS and the second
place for VI'T Description Generation.

1 Ad-hoc Video Search

1.1 Approach

Our solutions for the TV21 AVS task are developed based
on two cross-modal matching networks. One is the Sen-
tence Encoder Assembly (SEA) model [21], previously used
in our TV20 solution [20]. The other is an improvement of
SEA, which we term Multiple Encoder Assembly (MEA).
SEA supports text-video matching in multiple text-encoder-
specific common spaces. MEA improves over SEA in the
following two aspects. First, its text encoders are expanded
to include a pre-trained CLIP model [27]. Second, for
a more effective fusion of diverse visual features, visual-
encode-specific common space learning is performed [15].
As illustrated in Fig. 1, given m sentence-level features
produced by m text encoders and n video-level features pro-
duced by n visual encoders, MEA first performs modality-
specific attention-based feature fusion to produce a new
combined feature per modality [15]. By pairing each of the
m + 1 text features and each of the n + 1 video features, a

number of (m + 1) x (n + 1) common spaces are built. By
averaging the cosine similarities computed in the individual
spaces, we have the final cross-modal similarity as

1 n+1m+1
cms(t, 1)) = (Tl-|— 1) % (m+ 1) ; ; COS(fi’j(t),fi’j(U)),

(1)
where f; ;(t) and f; ;(v) indicate respectively the text and
video embeddings per common space indexed by (i, j).

1.1.1 Choice of Visual Encoders

We adopt a number of pre-trained 2D / 3D deep visual
models as visual encoders. The following seven deep visual
features are used:

1. r2101: A 2,048-d frame-level feature, extracted by
ResNeXt-101 trained on the full ImageNet set! [25].

2. re152: A 2,048-d frame-level feature, extracted by
ResNet-152 trained on 1k-class ImageNet! [11].

3. wsl: A 2,048-d frame-level feature, extracted by
ResNeXt-101 pre-trained on weakly labeled web images
followed by fine-tuning on ImageNet? [24].

4. clip: A 512-d frame-level feature, extracted by a pre-
trained CLIP® model (ViT-B/32) [27].

5. ¢8d: A 2,048-d segment-level feature, extracted by C3D
[31] trained on Kinetics400".

6. ircsn: A 2,048-d segment-level feature, extracted by
irCSN-152 [14] trained on IG-65M°.

7. tf: A 768-d segment-level feature, extracted by TimeS-
former [6] pre-trained on HowTol00M°.

com/xuchaoxi/video-cnn-feat
com/facebookresearch/WSL-Images
com/openai/CLIP
com/DavideA/c3d-pytorch
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Figure 1: Conceptual diagram of the Multiple Encoder Assembly (MEA). The key idea of MEA is to given m sentence-level features
produced by m text encoders and n video-level features produced by n visual encoders. By pairing each of the m + 1 text features and
each of the n + 1 video features, a number of (m 4 1) x (n+ 1) common spaces are built to compute a multi-space text-video similarity.

1.1.2 Choice of Textual Encoders

We experimented with the following three sentence en-
coders:

1. Bag-of-Words (bow) [10],

2. word2vec (w2v) [20], pretrained on Flickr tags [10,17],

3. CLIP (ViT-B/32) [27).

1.1.3 Choice of (Pre-)Training Data

Following our earlier study on the AVS task [7], our train-
ing data consists of MSR-VTT [35], TGIF [22], and VA-
TEX [34]. The following two image collections are used for
pre-training: MS-COCO [23] and GCC [30].

1.2

Following Run4 of our TV19 system [19], we use SEA (bow,
w2v) for preliminary feature selection. As shown in the Ta-
ble 1, Rank 3 and Rank 4 perform closely. So we further test
their features, i.e. rx101-re152-clip and rz101-wsl-clip, with
SEA-clip [7]. Different from SEA(bow, w2v), SEA-clip has
bow, w2v and CLIP as its text encoders. The result shows
that rz101-wsl-clip is better. We then tried to add 3D fea-
tures. Table 2 shows rz101-wsl-clip-ircsn has the best per-
formance. Hence, we use the following four visual features
in our solutions: rz101, wsl, clip and ircsn.

For training data, we use the joint set of MSR-VTT [35],
TGIF [22] and VATEX [34]. Following our conventional
setup [16, ], the development set of the TRECVID
2016 Video-to-Text Matching task [5] is used as an external

Internal Evaluation

Table 1: Comparing 2D and 3D visual features on the TRECVID
19/20 AVS task. Training data: MSR-VTT + TGIF.

Rank Visual features TV19 TV20 MEAN

Retrieval model: SEA-clip [7]
1 rel01-wsl-clip 0.204 0.262 0.233
2 rel01-rel52-clip 0.199 0.249 0.224

Retrieval model: SEA (bow, w2v) [21]
3 rel101-rel152-clip 0.199 0.233 0.216
4 rel01-wsl-clip 0.183  0.239 0.211
5 rel01-clip 0.196 0.223 0.210
6 rel101-re152-wsl-clip  0.182  0.238 0.210
7 rel101-rel52-wsl 0.159  0.208 0.184
8 rel01-rel52 0.167  0.201 0.184
9 rel01-wsl 0.148 0.208 0.178
10 clip-wsl 0.148  0.208 0.178
11 wsl 0.135 0.210 0.173
12 clip 0.155 0.180 0.168
13 ircsn 0.088 0.193 0.140
14 tf 0.102 0.142 0.122
15 c3d 0.036  0.098 0.067

validation set”. We use a two-round pre-training strategy,
where a model is first pre-trained on GCC followed by an-
other round pretraining on MS-COCO. As 3D features are
unavailable on images, we simply use zero-valued vectors for
pre-training.
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Figure 2: Overview of the TRECVID 2021 AVS benchmark evaluation.

Table 2: Evaluating the influence of pre-training on the
TRECVID 19/20 AVS tasks. Retrieval model: MAE.

Visual features TV1i9 TV20 MEAN
Pre-training on MS-COCO:
rel01-wsl-clip-c3d 0.203 0.339 0.271
rel01-wsl-clip-tf 0.205 0.313 0.259
rxl01-wsl-clip-ircsn 0.196 0.347 0.272
Pre-training on GCC:

re101-wsl-clip-c3d 0.199 0.331 0.265
rzl01-wsl-clip-ircsn 0.203 0.335 0.269

Pre-training on GCC and MS-COCO:
rxl01-wsl-clip-ircsn 0.209 0.357 0.283

1.3 Submissions

Based on the performance of the individual models and their
combinations on the TV18/TV19 AVS tasks, see Table 3,
we submitted the following four runs:

e Run 4: SEA-clip
e Run 3: MEA

e Run 2: Re-ranking the results of MEA by matching
concepts extracted from sentences and videos.

e Run 1 (primary run): Late average fusion of Run 4,
Run 8 and CLIP.

The performance of our four runs and two baselines on
the TRECVID 2021 AVS task is summarized in Table 3.
Compared to the invididual models, MEA is the best, fol-
lowed by SEA-clip and CLIP. An overview of the AVS task
benchmark is shown in Fig. 2. Our primary run, with mean
infAP of 0.343, is ranked at the third place team-wise.

"https://github.com/li-xirong/avs

2 Video-to-Text Description Genera-
tion

In this subtask, participants were asked to automatically
generate a natural language sentence to describe the content
of a given unlabeled video.

2.1 Approach

Our solutions are developed on the basis of the classical
Bottom-Up-Top-Down (BUTD) model [1], by improving its
encoder and decoder [3]. The overall architectures is illus-
trated in Fig. 3.

2.1.1 Multi-Level Video Feature Extraction and En-
hancement

Multi-level visual representation learning is found to be cru-
cial for a comprehensive representation of the video con-
tent [11,12]. In this work, we extract both holistic scene-
level features and fine-grained object-level features. Scene-
level features are extracted from various pre-trained mod-
els such as ResNext [24], CLIP (ViT-B/32) [27], Times-
Former [6], X3D [13] and irCSN [14], as previously used for
the AVS task. In order to extract features for salient objects,
we propose to apply a pre-trained video object segmenta-
tion network, AGNN [33], instead of widely used Faster-
RCNN as the object-level feature extractor. To align and
enhance the scene- and object- level features, a multi-head
self-attention module (MHSA) is used.

2.1.2 Caption Generation Network

Our caption generation network is based on the widely used
Bottom-Up-Top-Down (BUTD) model [1]. In a nutshell,
BUTD runs two LSTMs, i.e. an attention LSTM (att-
LSTM) and a language LSTM (lang-LSTM), in turn. To
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Table 3: Performance of our TV21 submissions and two baselines on TRECVID 2016-2021 AVS tasks.

Submission Solution TViée TV1i7 TVi8 TV1i9 TV20 TV2l MEAN
Runl Late fusion (Run3, Run4, CLIP) 0.246 0.320 0.161 0.227 0.366 0.343 0.277
Run2 MEA-rerank 0.224 0.342 0.168 0.224  0.361 0.340 0.293
Run3 MEA 0.223 0342 0.167 0.223  0.361 0.340 0.292
Run4 SEA-clip 0.232 0.255 0.135 0.213  0.358  0.337 0.239
- CLIP 0.173  0.208 0.087 0.136  0.161 0.194 0.160
- Late fusion (Run3, Run4) 0.235 0.300 0.156  0.225 0.365 0.339 0.270
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Figure 3: Proposed solution for video captioning [3]. The solution consists of four key steps: 1) scene-level and object-level feature
extraction, 2) feature enhancement by multi-head self attention, 3) candidate caption generation by Bottom-Up-Top-Down, and 4) caption
reranking by cross-modal matching. The entire network is end-to-to-end trained by reinforcement and adversarial learning, with a BERT
based semantic similarity between generated and reference captions added into the reward and a jointly trained discriminator.

deal with the scene-level and object-level features, we intro-
duce two att-LSTMs. The scene-att-LSTM concentrates on
the significance of diverse scene features, while the object-
att-LSTM attends the relationship among temporal frames
from the object aspect. By applying such dual attention
LSTMs, we effectively exploit multi-level visual representa-
tion for caption generation.

2.1.3 Reinforced Adversarial Learning

Towards generating human-like captions, our model is
trained in a semantic-reinforced and adversarial manner be-
sides minimizing the cross-entropy loss in word prediction.
Firstly, we adopt a semantic-reinforced training strategy
via self-critical sequence training (SCST), which has been
proved effective in image and video captioning [1,29,36,37].
As for the choice of the rewards for reinforcement learning,
previous works use metrics(e.g. CIDEr-D [32]). We further
consider a semantic similarity-based reward. In particular,
a pre-trained SentenceBert [28] is used to measure the sim-
ilarity score between generated captions and corresponding
ground truth. Secondly, we apply a discriminator to es-
timate how likely the generated captions share the same

fluency and language style with the groundtruths. In such
an adversarial training manner, the decoder, which can be
regarded as a generator, can be optimized jointly with the
discriminator towards generating more fluent and human-
like captions.

2.1.4 Caption Reranking by Cross-Modal Matching

Multiple models are trained with different setups. In or-
der to pick up the best caption from candidate captions
generated independently by these models, a retrieval-based
caption reranking is conducted [9]. To be specific, two pre-
trained video-text matching models, SEA [21] and CLIP
(ViT-B/32) [27], are utilized to calculate the alignment
scores between the given video and each candidate caption.
Both SEA and CLIP embed the video and captions into a
common space, wherein the cross-modal semantic similar-
ity is computed as the cosine similarity between the cor-
responding embedding vectors. We average the similarity
scores from the two models. The caption with the highest
score is selected.



Table 4: Our runs in the TRECVID 2021 VTT description generation subtask. Our best run receives CIDEr-D of 28.8%.

Run Feature Extraction ReinfOI."ced Advers?trial Reranking | Blew.d METEOR CIDEr.D SPICE
& Enhancement Learning Learning
1 v v X X 9.65 27.13 25.3 9.3
2 v v v X 9.65 27.02 25.5 9.2
3 v v after 5 epoch X 9.35 27.05 25.4 9.3
4 - - - v 9.88 28.46 28.8 10.3
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Figure 4: Overview of the TRECVID 2021 VTT Description
Generation benchmark evaluation.

2.2 Submissions

We use five public datasets for training, including the train-
ing split of MSR-VTT [35], TGIF [22], VATEX [34] and
TRECVID VTT 2018-2019 [2]. The VTIT 2020 training
set [4] is used for internal evaluation. As the effectiveness of
feature extraction & enhancement, caption generation and
semantic-reinforced training are separately verified in our
previous work [8], we start from the internal evaluation of
adversarial training. The following four runs are submitted:

e Run 1 is the baseline model, which use merely
semantic-reinforced training strategy.

e Run 2 adds adversarial learning based on Run 1.

e Run 3 starts adversarial learning after 5 epoch due to
the saturation of discriminator.

e Run 4 is the ensemble version via reranking.

Results are shown in Table 4. Adversarial training re-
quires further exploration for better generalization, and the
ensemble version via reranking shows the most significant
improvements. An overview of the VI'T Description Gen-
eration task benchmark is shown in Fig. 4. Team-wise, our
submissions are ranked at the second place among all the
submissions.
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